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6  CIRCULAR MOTION AND GRAVITATION
Introduction
Two apparently distinct areas of physics are 
linked in this topic: motion in a circle and the 
basic ideas of gravitation. But of course they are 
not distinct at all. The motion of a satellite about 
its planet involves both a consideration of the 

gravitational force and the mechanics of motion 
in a circle. Man cannot travel beyond the Earth 
without a knowledge of both these aspects of 
Physics.

6.1 Circular motion

OBJ TEXT_UND

 Applications and skills
 ➔ Identifying the forces providing the centripetal 

forces such as tension, friction, gravitational, 
electrical, or magnetic

 ➔ Solving problems involving centripetal force, 
centripetal acceleration, period, frequency, 
angular displacement, linear speed, and 
angular velocity

 ➔ Qualitatively and quantitatively describing 
examples of circular motion including cases  
of vertical and horizontal circular motion

Equations
 ➔ speed–angular speed relationship: v = ωr

 ➔ centripetal acceleration: a =    v  2  ____ r   =   4 π  2 r ________ 
 T  2 

  

 ➔ centripetal force: F =    mv  2  _______ r   = mω2r

Understanding
 ➔ Period, frequency, angular displacement, and 

angular velocity

 ➔ Centripetal force

 ➔ Centripetal acceleration

 Nature of science
The drive to develop ideas about circular motion 
came from observations of the universe. How was 
it that astronomical objects could move in circular 
or elliptical orbits? What kept them in place in their 
motion? Scientists were able to deduce that there 
must be a force acting radially inwards for every 
case of circular motion that is observed. Whether 
it is a bicycle going around a corner or a planet 
orbiting its star, the physics is the same.
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Moving in a circle
Most children take great delight in an object on a string whirling in a 
circle – though they may be less happy with the consequences when the 
string breaks and the object hits a window! Rides at a theme park and 
trains on a railway are yet more examples of movement in a circle. What 
is needed to keep something rotating at constant speed? 

The choice of term (as usual in physics!) is very deliberate. In circular 
motion we say that the “speed is constant” but not the “velocity is constant”. 

Velocity, as a vector quantity, has both magnitude and direction. The 
object on the string has a constant speed but the direction in which the 
object is moving is changing all the time. The velocity has a constant 
magnitude but a changing direction. If either of the two parts that make up 
a vector change, then the vector is no longer constant. Whenever velocity 
changes (even if it is only the direction) then the object is accelerated.  

Understanding the physics of this acceleration is the key to 
understanding circular motion. But before looking at how the 
acceleration arises we need a language to describe the motion.

Angular displacement
The angle moved around the circle by an object from where its circular 
motion starts is known as the angular displacement. Unlike the 
linear displacement used in Topic 2, angular displacement will not 
be considered to be a vector in IB Physics. Angular displacement is 
the angle through which the object moves and it can be measured in 
degrees (°) or in radians (rad). Radians are more commonly used than 
degrees in this branch of physics. If you have not met radians before, 
read about the differences between radians and degrees.

  Nature of science
Radians or degrees
Calculations of circular motion involve the use 
of angles. In any science you studied before 
starting this course you will almost certainly have 
measured all angles in degrees. 

1° (degree) is defined to be   1
 ___ 360   th of the way 

around a circle.

In some other areas of physics (including circular 
motion) there is an alternative measure of angle 
that is much more convenient, the radian. Radians 
are based on the geometry of the arc of a circle.

1 radian (abbreviated as rad) is defined as the 
angle equal to the circumference of an arc of a 
circle divided by the radius of the circle. In symbols

θ =   s _ r  

▲  Figure 2 Definition of radian.

s

r
θ

s
rθ =

Going around the circle once means travelling 
around the circumference; this is a distance of 
2πr. The angle θ in radians subtended by the 
whole circle is   2πr

 ___ r   = 2π rad.

So 360° = 2π = 6.28 rad

and 1 rad = 57.3°

▲  Figure 1 A fairground carousel.
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Angular speed
In Topic 2 we used the term speed to mean “linear speed”. When the 
motion is in a circle there is an alternative: angular speed, this is given 
the symbol ω (the lower-case Greek letter, omega).

average angular speed =   
angular displacement

   ____    
time for the angular displacement to take place

  

Figure 3 shows how things are defined and you will see that in symbols 
the definition becomes

ω =   θ _ 
t
  

where θ is the angular displacement and t is the time taken for the 
angular displacement.

  Nature of science
Angular speed or angular velocity?
You may be wondering about the distinction 
between angular speed and angular velocity, and 
whether angular velocity is a vector similar to 
linear velocity.

The answer is that angular velocity is a vector but 
an unusual one. It has a magnitude equal to the 
angular speed, but its direction is surprising! The 
direction is along the axis of rotation, in other 

Sometimes, the radian numbers are left as 
fractions, so 

90° =   π _ 
2
    (   1 _ 

4
   round the circle ) , 

30° =   π _ 
6
    (   1 _ 

12
   round the circle )  

and so on.

To convert other values for yourself, use the 

equation   
angle in degree

  ___________ 360   =   
angle in radians

  ___________ 2π
  

There are some similarities between the sine 
of an angle and the angle in radians. The two 
quantities are compared in this Nature of Science 
box which shows sin θ and θ in radians. Notice 
that, as θ becomes smaller, sin (θ) and θ become 
closer together. From angles of 10° down to 0, 
the differences between sin θ and θ are very small 
and in some calculations and proofs we treat sin θ 
and θ as being equal (this is known as “the small 
angle approximation”). For small angles cos θ 
approximates to zero radians.

To illustrate this, here are the values of sin θ and 
θ in radians for four angles: 90°, 45°, 10°, and 5°. 
Notice how similar the sine values and the radians 
are for 10° and 5°.

sin (90°) = 1.000;    π _ 
2

   rad = 1.571 rad

sin (45°) = 0.707;    π _ 
4

   rad = 0.785 rad

sin (10°) = 0.175;   π _ 
18

   rad = 0.174 rad

sin (5°) = 0.087;    π _ 
36

   rad = 0.087 rad

Finally, a practical point: Scientific and graphic 
calculators work happily in either degrees or 
radians (and sometimes in another type of angular 
measure known as “grad” too). But the calculator 
has to be “told” what to expect! Always check that 
your calculator is set to work in radians if that is 
what you want, or in degrees if those are the units 
you are using. You will lose calculation marks in 
an examination if you confuse the calculator!

▲  Figure 3 Angular speed.

θ
ω, angular speed =          = t2 − t1

θ
t

time t1

θ

ω

time t2

direction
of angular
velocity vector

direction of
rotation

▲  Figure 4 Angular velocity direction.
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Period and frequency
The time taken for the object to go round the circle once is known as the 
periodic time or simply the period of the motion, it has the symbol T. 
In one period, the angular distance travelled is 2π rad. So, 

T =   2π
 _ ω  

When T is in seconds the units of ω are radians per second, abbreviated 
to rad s–1.

If you have already studied waves in this course, you might have met the 
idea of time period – the time for one cycle. Another quantity that is 
associated with T is frequency. Frequency is the number of times an object 
goes round a circle in unit time (usually taken to be 1 second), so one way 
to express the unit of frequency would be in “per second” or s–1. However, 
the unit of frequency is re-named after the 19th century physicist Heinrich 
Hertz and is abbreviated to Hz. There is a link between T and f so that:

T =   1 _ 
f
  

This leads to a link between ω and f

ω = 2πf

Linking angular and linear speeds
Sometimes we know the linear speed and need the angular speed or 
vice versa. 

The link is straightforward: When the circle has a radius r the 
circumference is 2πr, and T, is the time taken to go around once. So the 
linear speed of the object along the edge of the circle v is 

v =   2πr _ 
T

  

Worked example
A large clock on a building has a minute hand 
that is 4.2 m long.

Calculate:

a) the angular speed of the minute hand

b) the angular displacement, in radians, in the 
time periods

(i) 12 noon to 12.20

(ii) 12 noon to 14.30.

c) the linear speed of the tip of the minute hand.

Solution
a) The minute hand goes round once (2π rad) 

every hour.

One hour is 3600 s 

angular speed =   
angular displacement

  __  
time taken

  

 =   2π
 _ 

3600
   = 0.001 75 rad s−1

b) (i) 20 minutes is   1 __ 3   of 2π, so   2π
 ___ 3   rad

(ii) 2.5 h is 2π × 2.5 = 5π rad

c) v = rω = 4.2 × 0.001 75 = 0.007 33 m s−1  
  = 7.3 mm s−1

words, through the centre of the circle around 
which the object is moving and perpendicular to 
the plane of the rotation. 

The direction follows a clockwise corkscrew 
rule so that in this example the direction of the 

angular velocity vector is into the plane of the 
paper.

In the IB course, only the angular speed – the 
scalar quantity – is used.
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Rearranging the equation gives

T =   2πr _ v  

We have just seen that

T =   2π
 _ ω  

so equating the two equations for T gives 

  2πr _ v   =   2π
 _ ω  

Cancelling the 2π and rearranging gives 

v = ωr

Notice that, in both this equation and in the earlier equation s = θr, the 
radius r multiplies the angular term to obtain the linear term. This is a 
consequence of the definition of the angular measure.

Centripetal acceleration
Earlier we showed that an object moving at a constant angular speed 
in a circle is being accelerated. Newton’s first law tells us that, for any 
object in which the direction of motion or the speed is changing, there 
must be an external force acting. In circular motion the direction is 
constantly changing and so the object accelerates and there must be a 
force acting on it to cause this to happen. In which direction do the force 
and the acceleration act, and what are their sizes?

The diagram shows two points P
1
 and P

2
 on the circle together with the 

velocity vectors v
old

 and v
new 

at these points. The vectors are the same 
length as each other because the speed is constant. However, v

old
 and v

new
 

point in different directions because the object has moved round the circle 
by an angular distance Δθ between P

1
 and P

2
. Acceleration is, as usual, 

  
change of velocity

  ___   
time taken for the change

  

The change in velocity is the change-of-velocity vector Δv that has to be 
added to v

old
 in order to make it become the same length and direction as 

v
new

. Identify these vectors on the diagram.

▲  Figure 5 Proof of centripetal acceleration direction.

P1

P2

vold

voldvnew

�v

�v

vnew

2

vold

vnew

�v

2
�θ
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Notice that v
old 

and v
new

 slide round the circle to meet. Where does the 
new vector Δv point? The answer is: to the centre of the circle. This is an 
“averaging” process to find out what the difference is between v

old
 and 

v
new

 half-way between the two points. 

This averaging can be taken further. The time, Δt, to go between P
1
 and 

P
2
, and the linear distance around the circle between P

1
 and P

2
 (which is 

rθ) are related by

Δt =   rΔθ
 _ v  

Using some trigonometry on the diagram shows that 

  Δv _ 
2

   = v sin (   Δθ
 _ 

2
   ) 

The size of the average acceleration a that is directed towards the centre 
of the circle is

a =   Δv _ 
Δt

   =   
2v sin  (   Δθ

 ___ 2   ) 
 _ 

  2r
 __ v     
Δθ
 ___ 2  
   

This can be written as

a =    v  
2

  _ r      
sin  (   Δθ

 ___ 2   ) 
 _ 

  Δθ
 ___ 2  
  

When Δθ is very small, the ratio   
sin  (   Δθ

 ___ 2   ) 
 ______ 

  Δθ
 ___ 2  
   is almost exactly equal to 1 and 

so the instantaneous acceleration a when P
1
 and P

2
 are very close together is 

a =    v  2  _ r   = ω2r = vω directed to the centre of the circle.

This acceleration is at 90° to the velocity vector and it points inwards to 
the centre of the circle.

The force that acts to keep the object moving in a circle is called the 
centripetal force and this force leads to a centripetal acceleration. 
(The origin of the word centripetal comes from two Latin words centrum 
and petere – literally “to lead to the centre”.)

Centripetal force
Newton’s second law of motion in its simpler form tells us that F = ma 
using the usual symbols.

The second law applies to the force that provides the centripetal 
acceleration, so the magnitude of the force = m   v  2 

 __ r   = mω2r = mvω. The 
question we need to ask for each situation is: what force provides the 
centripetal force for that situation? The direction of this force must be 
along the radial line between the object and the centre of the circle.

  Nature of 
science

Linking it together
Notice that some of these 
equations have interesting 
links elsewhere: mvω is, for 
example, the magnitude 
of the linear momentum 
multiplied by ω. Try to be 
alert for these links as they 
will help you to piece your 
physics together.

  Investigate!
Investigating how F varies with m, v and r
This experiment tests the relationship

m     v  2  _ r   = Mg

 ●  To do this a bung is whirled in a horizontal 
circle with a weight hanging from one end of a 
string and mass (rubber bung) on the other end.
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 ● A paper clip is attached to the string below a 
glass tube. The clip is used to ensure that the 
radius of rotation of the bung is constant – the 
bung should be rotated at a speed so that the 
paper clip just stays below the glass tube. 

centripetal force apparatus

mass, m

r

glass tube

paper clip

string

weight (Mg)

▲  Figure 6 Centripetal force, mass, and speed.

 ●  The tension in the string is the same 
everywhere (whether below the glass tube or 
above in the horizontal part). This tension is 
F in the equation and is equal to Mg where M 
is the mass of the weight (hanging vertically).

 ●  Use a speed at which you can count the 
number of rotations of m in a particular time 
and from this work out the linear speed v of 
mass m. 

To verify the equation you need to test 
each variable against the others. There are 
a number of possible experiments in each of 
which one variable is held constant (a control 
variable), one is varied (the independent 
variable), and the third (the dependent variable) 
is measured. One example is:

Variation of v with r

 ●  In this experiment, m and M must be 
unchanged. Move the clip to change r, and for 
each value of r, measure v using the method 
given above.

 ●  Analysis: 

     v  2  _ r   = constant

 ●  A graph of v2 against r ought to be a straight line 
passing through the origin. Alternatively you 
could, for each experimental run, simply divide 
v2 by r and look critically at the answer (which 
should be the same each time) to see if the value 
is really constant. If going down this route, you 
ought to assess the errors in the experiment and 
put error limits on your    v  2 

 __ r   value. 

 ●  What are the other possible experimental tests?

 ●  In practice the string cannot rotate in the 
horizontal plane because of its own weight. 
How can you improve the experiment or the 
analysis to allow for this?

  Nature of science
Centripetal or centrifugal?
When discussing circular motion, you will almost 
certainly have heard the term “centrifugal force” – 
probably everywhere except in a physics laboratory! 
In this course we have spoken exclusively about 
“centripetal force”. Why are there two terms in use?

It should now be clear to you how circular motion 
arises: a force acts to the centre of the circle 
around which the object is moving. The alternative 
idea of centrifugal force comes from common 
experience. Imagine you are in a car going round a 
circle at high speed. You will undoubtedly feel as if 
you are being “flung outwards”. 

One way to explain this is to imagine the situation 
from the vantage point of a helicopter hovering 

real centripetal force
supplied by friction at tyres

direction of car

straight on direction
at this instant

car

▲  Figure 7 Centripetal forces in a car seen from above.
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stationary above the circle around which the 
car is moving. From the helicopter you will see 
the passenger attempting to go in a straight line 
(Newton’s first law), but the passenger is forced to 
move in a circle through friction forces between 
passenger and seat. If the passenger were sitting 
on a friction-less seat and not wearing a seat belt, 
then he or she will not get the “message” that the 
car is turning. The passenger continues to move in 
a straight line eventually meeting the door that is 
turning with the car. If there were no door, what 
direction will the passenger take?

Another way to explain this is to imagine yourself 
in the car as it rotates. This is a rotating frame of 
reference that is accelerating and as such cannot 
obey Newton’s laws of motion. You instinctively 
think that the rotating frame is actually stationary. 
Therefore your tendency to go in what you 
believe to be a straight line actually feels like an 
outward force away from the centre of the circle 
(remember the rest of the world now rotates 
round you, and your straight line is actually part 
of a circle). Think about a cup of coffee sitting on 
the floor of the car. If there is insufficient friction 
at the base of the cup, the cup will slide to the side 
of the car. In the inertial frame of reference (the 
Earth) the cup is trying to go in a straight line. 
In your rotating frame of reference you have to 
“invent” a force acting outwards from the centre 
of the circle to explain the motion of the cup.

centre of circle

direction of movement
observed by passenger 

force imagined
to act on cupcup

▲  Figure 8 Rotation forces.

There are many examples of changing a reference 
frame in physics: research the Foucault pendulum 
and perhaps go to see one of these fascinating 
pendulums in action. Look up what is meant by 
the Coriolis force and find out how it affects the 
motion of weather systems in the northern and 
southern hemispheres.

One of the tricks that physicists often use is to 
change reference frames – it’s all part of the nature 
of science to adopt alternative frames of reference 
to make explanations and theories more accessible.

One last tip: Don’t use explanations based on 
centrifugal force in an IB examination. The real 
force is centripetal; centrifugal force was invented 
to satisfy Newton’s second law in an accelerated 
frame of reference.

▲  Figure 9 Satellites in orbit.

Centripetal accelerations and forces in action
Satellites in orbit
Figure 9 shows satellites in a circular orbit around the Earth. Why do 
they follow these paths? Gravitational forces act between the centre of 
mass of the Earth and the centre of mass of the satellite. The direction of 
the force acting on the satellite is always towards the centre of the planet 
and it is the gravity that supplies the centripetal force. 

Amusement park rides
Many amusement park rides take their passengers in curved paths that 
are all or part of a circle. How does circular motion provide a thrill?  

In the type of ride shown in figure 10, the people are inside a drum that 
rotates about a vertical axis. When the rotation speed is large enough the 
people are forced to the sides of the drum and the floor drops away. The 
people are quite safe however because they are “held” against the inside 
of the drum as the reaction at the wall provides the centripetal force to 
keep them moving in the circle. The people in the ride feel the reaction 
between their spine and the wall. Friction between the rider and the 
wall prevents the rider from slipping down the wall.
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▲  Figure 10 The rotor in action.

Turning and banking
When a driver wants to make a car turn a corner, a resultant force must 
act towards the centre of the circle to provide a centripetal force. The car 
is in vertical equilibrium (the driving surface is horizontal) but not in 
horizontal equilibrium.

Turning on a horizontal road
For a horizontal road surface, the friction acting between the tyres and 
the road becomes the centripetal force. The friction force is related to 
the coefficient of friction and the normal reaction at the surface where 
friction occurs.

planelevation

direction

friction

reaction, R

centre of circle

mg, W

friction

▲  Figure 11 Car moving in a circle.

If the car is not to skid, the centripetal force required has to be less than 
the frictional force 

m    v  
2

  _ r   < μ
s
mg

where μ
s
 is the static coefficient of friction. Note that when the vehicle 

is already skidding the “less than” sign becomes an equality and the 
dynamic coefficient of friction should be used.

This rearranges to give a maximum speed of v
max 

=  √
____

 μ
d
rg   for a circle of 

radius r.

Banking
Tracks for motor or cycle racing, and even ordinary roads for cars are 
sometimes banked (figures 12 and 13). The curve of the banked road 
surface is inclined at an angle so that the normal reaction force contributes 
to the centripetal force that is needed for the vehicle to go round the track 

weight

Reaction of
wall on rider

friction force

N
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at a particular speed. Bicycles and motorcycles can achieve the same effect 
on a level road surface by “leaning in” to the curve. Tyres do not need to 
provide so much friction on a banked track compared to a horizontal road; 
this reduces the risk of skidding and increases safety. 

Although you will not be asked to solve mathematical problems on this 
topic in your IB Physics examination, you do need to understand the 
principles that underpin banking. 

Figure 12 shows forces acting on a small sphere rolling round a track. 
This is simplified to a point object moving in a circle to remove the 
complications of two or four wheels. A horizontal centripetal force 
directed towards the centre of the circle is needed for the rotation. The 
other forces that act on the ball are the force normal to the surface 
(which is at the banking angle θ) and its weight acting vertically down. 
The vector sum of the horizontal components of the weight and the 
normal force must equal the centripetal force. 

Looking at this another way, if N is the normal force then the centripetal 
force is equal to 

N sin θ

The normal force resolved vertically is N cos θ and is, of course, equal 

and opposite to mg. So F
centripetal

 =  (   mg
 ____ 

cos θ
   )   sin θ = mg tan θ

F
centripetal

 =    mv  2 
 ___ r    and therefore tan θ =    v  2 

 __ gr  

The banking angle is correct at a particular speed and radius. Notice that 
it does not depend on the mass of the vehicle so a banked road works for 
a cyclist and a car, provided that they are going at the same speed.

Some more examples of banking:

 ● Commercial airline pilots fly around a banked curve to change the 
direction of a passenger jet. If the angle is correct, the passengers will 
not feel the turn, simply a marginal increase in weight pressing down 
on their seat).

 ● Some high-speed trains tilt as they go around curves so that the 
passengers feel more comfortable.

Moving in a vertical circle
So far the examples have been of motion around a horizontal circle. 
People will queue for a long time to experience moderate fear on a 
fairground attraction like the rollercoaster in figure 14. The amount of 
thrill from the ride depends on its height, speed, and also the forces that 
act on the riders.

How is the horizontal situation modified when the circular motion of the 
mass is in a vertical plane?  

1 What are the forces acting when the motion is in a vertical circle?
Imagine a mass on the end of a string that is moving in a vertical circle at 
constant speed.

Look carefully at figure 15 and notice the way the tension in the string 
changes as the mass goes around.

friction centripetal force

normal reaction

weight

▲  Figure 13 Cycle velodrome.

▲  Figure 12 Forces in banking.

N
N 

co
s 
θ

N sin θ

mg

θ

θ
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▲  Figure 14 Theme park ride.

Begin with the case when the string is horizontal, at point A. The weight 
acts downwards and the tension in the string is the horizontal centripetal 
force towards the centre of the circle.

The mass continues to move upwards and reaches the top of the circle 
at B. At this point the tension in the string and the weight both act 
downwards. Thus:

T
down

 + mg = m   v  2  _ r  

and therefore

T
down

 = m   v  2  _ r   − mg

The weight of the mass combines with the tension to provide the 
centripetal force and so the tension required is less than the tension T 
when the string is horizontal.

At C, the bottom of the circle, the tension and the weight both act 
vertically but in opposite directions and so

T
up 

= m   v  2  _ r   + mg

At the bottom, the string tension must overcome weight and also 
provide the required centripetal force.

As the mass moves around the circle, the tension in the string varies 
continuously. It has a minimum value at the top of the circle and a 
maximum at the bottom. The bottom of the circle is the point where the 
string is most likely to break. If the maximum breaking tension of the 
string is T

break
, then, for the string to remain intact,

T
break

 > m   v  2  _ r   + mg 

and the linear speed at the bottom of the circle must be less than 

 √
____________

    r _ m   (T
break 

− mg)  

If this seems to you to be a very theoretical idea without much practical 
value, think about a car going over a bridge. If you assume that the 
shape of the bridge is part of a circle, then there is a radius of curvature 
r. What is the speed at which the car will lose contact with the bridge? 

▲  Figure 15 Forces in circular motion 
in a vertical plane. 

mg

T T

Tdown

Tup

mg

mg

mg

C

AD
A

B
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radius of
curvature

v

▲  Figure 16 Car going over a bridge.

This is the case considered above, where the object, in this case the car, 
is at the top of the circle. What is the “tension” (in this case the force 
between car and road) if the car wheels are to lose contact with the bridge? 
To answer this question, you might begin with a free-body diagram. You 
should be able to show that the car loses contact at a speed equal to  √

__
 gr  .

2 How does speed change when motion is in a vertical circle?
Not all circular motion in a vertical circle is at a constant speed. As 
a mass moves upwards it slows as kinetic energy is transferred to 
gravitational potential energy (if there is nothing to keep it moving 
at constant speed). At the top of the motion the mass must not stop 
moving or even go too slowly, because if it did then the string would lose 
its tension. The motion would no longer be in a circle.

The centripetal force F
c
 needed to maintain the motion is  

F
c 
= m    v  2 

 __ r   as usual, at the top of the circle, if F
c
 is supplied entirely by 

gravity then 

F
c 
= mg = m    v  2  _ r   

Just for an instant, the object is in free-fall.

The equation can be rearranged to give

v
top

 =  √
__

 gr  

and this is the minimum speed at the top of the circle for which the motion 
will still be circular. The minimum speed does not depend on mass.

Energy is conserved assuming that there are no losses (for example, 
to internal energy as a result of air resistance as the mass goes round). 
Equating the energies: 

kinetic energy at top + gravitational potential energy difference 
between top and bottom = kinetic energy at the bottom

and 

  1 _ 
2

   m  v  top   
2  + mg(2r) =   1 _ 

2
  m  v  bottom   2 

By substituting for both tensions, T
bottom

  and T
top

, it is possible to 
show that 

T
bottom

 = T
top

 + 6m

You can find this proof on the website.
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Worked examples
1 A hammer thrower in an athletics competition 

swings the hammer on its chain round 7.5 
times in 5.2 s before releasing it. The hammer 
describes a circle of radius 4.2 m and has a mass 
of 4.0 kg. Assume that the hammer is swung in a 
horizontal circle and that the chain is horizontal.

a) Calculate, for the rotation: 

(i) the average angular speed of the 
hammer

(ii) the average tension in the chain. 

b) Comment on the assumptions made in this 
question.

Solution
a) (i)  7.5 revolutions = 15π rad 

 angular speed =   15π
 _ 

5.2
   = 9.1 rad s−1

(ii) Tension in the chain = centripetal force 
required for rotation centripetal force  
= mrω2 = 4.0 × 4.2 × 9.12 = 1400 N

b) The thrower usually inclines the plane of the 
circle at about 45° to the horizontal in order 
to achieve maximum range. Even if the 
plane were horizontal, then the weight of 
the hammer would contribute to the system 
so that a component of the tension in the 
chain must allow for this. Both assumptions 
are unlikely.

Understanding
 ➔ Newton’s law of gravitation

 ➔ Gravitational field strength

6.2 Newton’s law of gravitation

  Applications and skills
 ➔ Describing the relationship between 

gravitational force and centripetal force

 ➔ Applying Newton’s law of gravitation to the 
motion of an object in circular orbit around a 
point mass

 ➔ Solving problems involving gravitational force, 
gravitational field strength, orbital speed, and 
orbital period

 ➔ Determining the resultant gravitational field 
strength due to two bodies

Equations
 ➔ Newton’s law of gravitation: F = G   Mm ______ 

 r  2 
  

 ➔ gravitational field strength: g =   F ____ m  

 ➔ gravitational field strength and the gravitational 
constant: g = G   M ____ 

 r  2 
  

  Nature of science
Newton’s insights into mechanics and gravitation 
led him to develop laws of motion and a law of 
gravitation. One of his motion laws and the law of 
gravitation are mathematical in nature, two of the 
motion laws are descriptive. None of these laws 
can be proved and there is no attempt in them to 
explain why the masses are accelerated under the 
influence of a force, or why two masses are attracted 
by the force of gravity. Newton’s ideas about motion 
have been subsequently modified by the work of 
Einstein. The questioning and insight that leads to the 
development of laws are fundamental to the nature of 
science.
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